
25

 НАУЧНОЕ ОБОЗРЕНИЕ № 5, 2025 

 ТЕХНИЧЕСКИЕ НАУКИ 
УДК 004.8

ПРИМЕНЕНИЕ БОЛЬШИХ ЯЗЫКОВЫХ МОДЕЛЕЙ
 (LARGE LANGUAGE MODELS) В МЕТОДОЛОГИИ DEVOPS

Лелейкин С.С.
Образовательная автономная некоммерческая организация высшего образования

«Московский технологический институт», Москва, Российская Федерация,
e-mail: ssoft@mail.ru

Настоящая статья посвящена изучению роли больших языковых моделей (Large Language Models) в со-
временном подходе DevOps, направленном на обеспечение эффективной организации совместной работы ко-
манд разработчиков и администраторов. За последние годы крупные достижения в области искусственного
интеллекта привели к созданию мощных моделей, способных обрабатывать естественный язык и эффективно
решать разнообразные задачи. Такие модели представляют собой инструмент, способствующий увеличению
продуктивности труда и уменьшению временных затрат на выполнение рутинных действий. Цель настоящего
исследования заключается в определении наиболее перспективных областей применения больших языковых
моделей в процессах DevOps и оценке влияния их внедрения на повышение продуктивности команды. Автор
исследует перспективы внедрения больших языковых моделей в различных аспектах методологии DevOps,
рассматривая конкретные примеры использования моделей в таких важных операциях, как помощь в написа-
нии и комментировании кода, дебаге и анализе логов приложения, конфигурации, освоении новых технологий,
рефакторинге проекта, выборе архитектурного решения, подсчете технических ресурсов и документировании.
Основное внимание уделено возможностям увеличения производительности труда разработчиков и оптимиза-
ции рабочих процессов за счет использования интеллектуального ассистента на базе больших языковых моде-
лей. Вместе с тем автор подчеркивает наличие определенных рисков и ограничений, связанных с качеством ре-
зультатов, безопасностью обрабатываемых данных и необходимостью дальнейшей адаптации моделей к спец-
ифическим требованиям каждого отдельного проекта. Приводятся выводы о том, что грамотное использование
больших языковых моделей может оказать положительное влияние на организацию процессов DevOps, по-
могая компаниям достигать целей по повышению гибкости и устойчивости бизнес-процессов. Таким образом,
исследование посвящено актуальным проблемам современного DevOps и предлагает практические рекомен-
дации по расширению арсенала инструментов инженера посредством внедрения больших языковых моделей.

Ключевые слова: DevOps, большие языковые модели, автоматизация, интеграция, поставка

APPLICATION OF LARGE LANGUAGE MODELS
IN DEVOPS METHODOLOGY

Leleykin S.S.
Educational Autonomous Non-Commercial Organization of Higher Education

“Moscow Technological Institute”, Moscow, Russian Federation, e-mail: ssoft@mail.ru

This article is devoted to the study of the role of Large Language Models in the modern DevOps approach
aimed at ensuring effective collaboration between development teams and administrators. In recent years, major
advances in artificial intelligence have led to the creation of powerful models capable of processing natural language
and effectively solving a variety of tasks. Such models are a tool that helps to increase labor productivity and reduce
the time required to perform routine actions. The purpose of this study is to identify the most promising areas of
application of large language models in DevOps processes and to assess the impact of their implementation on
increasing team productivity. The author explores the prospects for implementing large language models in various
aspects of the DevOps methodology, considering specific examples of using models in such important operations
as assistance in writing and commenting code, debugging and analyzing application logs, configuration, mastering
new technologies, refactoring a project, choosing an architectural solution, calculating technical resources and
documenting. The main focus is on the possibilities of increasing developer productivity and optimizing workflows
through the use of an intelligent assistant based on large language models. At the same time, the author emphasizes
the presence of certain risks and limitations related to the quality of the results, the security of the processed data and
the need for further adaptation of models to the specific requirements of each individual project. It is concluded that
the competent use of large language models can have a positive impact on the organization of DevOps processes,
helping companies achieve goals to increase the flexibility and sustainability of business processes. Thus, the study
is devoted to the current problems of modern DevOps and offers practical recommendations for expanding the
arsenal of engineer’s tools through the introduction of large language models.

Keywords: DevOps, large language models, automation, integration, delivery

Введение
Методология DevOps способствует уско-

рению доставки изменений в производствен-
ные среды через непрерывную интеграцию
(continuous intergation, далее по тексту CI),
непрерывное развертывание (continuous de-

livery, далее по тексту CD) и автоматизацию
инфраструктурных процессов.

Проблематика, решаемая данным ис-
следованием: низкий уровень описания
потенциальных точек внедрения больших
языковых моделей (large language models,

26

 SCIENTIFIC REVIEW № 5, 2025 

 TECHNICAL SCIENCES 
далее по тексту будет использовано со-
кращение LLM) в методологию DevOps,
блокирующий дополнительные возможно-
сти для оптимизации процедур разработки
и эксплуатации.

Цель настоящего исследования заклю-
чается в определении наиболее перспектив-
ных областей применения больших языко-
вых моделей (LLM) в процессах DevOps
и оценке влияния их внедрения на повыше-
ние продуктивности команды разработчи-
ков и администраторов.

Основные задачи исследования:
- определение потенциала LLM в под-

держке основных этапов жизненного цикла
разработки, тестирования и поставки ПО;

- оценка преимуществ и недостатков ис-
пользования LLM в конкретных подходах
DevOps;

- выявление факторов, влияющих на
успешность внедрения LLM в процессы
DevOps;

- формулирование практических реко-
мендаций по эффективному применению
LLM в реальных проектах.

Материалы и методы исследования
Исследование проводилось в компакт-

ной DevOps [1] команде (1 Senior и 2 Middle
инженера). В качестве основной модели ис-
пользовалась бесплатная версия GigaChat,
а также другие свободно доступные бес-
платные версии LLM. Оценка эффективно-
сти велась по agile-метрикам [2], с фокусом
на трудозатраты, метрики качества выпол-
нения и скорость решения задач.

В результате исследования были полу-
чены и сопоставлены метрики выполнения

схожих по сложности задач сотрудниками,
применяющими LLM и не применяющими.
Замер контроля качества производился ли-
дером компетенции. Трудозатраты оценива-
лись всей командой по методологии Scrum
[2] во избежание различия в сложности вы-
полнения сравниваемых задач. Время вы-
полнения задач формировалось на основе
выгрузки статистики из Jira.

Рассматривались следующие направ-
ления работы DevOps инженера: генера-
ция и рефакторинг кода, комментирование
и документирование, анализ логов и отлад-
ка, конфигурация инфраструктуры, оценка
ресурсов и проектирование архитектуры,
освоение новых технологий. Для исследо-
вания использовались следующие методы:
наблюдение, эксперимент, измерение.

Результаты исследования
и их обсуждение

Помощь в написании кода. Автомати-
ческая генерация фрагментов кода – одна
из важнейших функций LLM. Она ускоряет
разработку прототипов, реализацию функ-
ций и модернизацию существующих ком-
понентов, сокращая время написания кода
на 20–80 %. Основная проблема – слож-
ность оценки качества генерируемого кода
инженерами уровня Junior, что требует до-
полнительной проверки опытными коллега-
ми (уровня Middle, Senior).

Анализ данных, представленных в табл. 1,
показывает, что за более короткий период
времени LLM выдала код, аналогичный на-
писанному Senior DevOps инженером. Оба
результата приемлемы и выполняют по-
ставленную задачу.

Таблица 1
Примеры написанного кода по задаче «Необходимо открыть файл test.txt

и распечатать все строки, содержащие FLAG» на языке программирования Python

Исполнитель Senior DevOps инженер LLM
Задача/промпт Необходимо открыть файл

test.txt и распечатать все стро-
ки, содержащие FLAG

Ты – профессиональный Senior DevOps. Необ-
ходимо открыть файл test.txt и распечатать все
строки, содержащие FLAG. Используй Python

Результат file = open(‘test.txt’)
for line in file:
 if ‘FLAG’ in line:
 print(line.strip())

Открываем файл test.txt в режиме чтения
with open(‘test.txt’, ‘r’) as file:
 # Читаем все строки файла
 lines = file.readlines()
 # Проходим по каждой строке и проверяем на-
личие слова ‘FLAG’
 for line in lines:
 if ‘FLAG’ in line:
 print(line.strip()) # Печать строки без сим-
вола новой строки

Время 2 минуты 20 секунд

Примечание: составлена автором на основе ответа LLM и программного кода собственной раз-
работки; промпт [3] составлен автором.

27

 НАУЧНОЕ ОБОЗРЕНИЕ № 5, 2025 

 ТЕХНИЧЕСКИЕ НАУКИ 
Помощь в комментировании. Коммен-

тирование кода улучшает его прозрач-
ность и читаемость. Исследование пока-
зало, что LLM повышают покрытие кода
комментариями на 20–40 %, детально
описывая логику и учитывая контекст. Од-
нако требуется контроль инженера, хоро-
шо погруженного в контекст проекта, так
как комментарии модели могут требовать
коррекции. Качество генерации улучша-
ется при доступе к широкому контексту

всего проекта и грамотно сформулирован-
ных промптах.

С примером комментирования соб-
ственного кода LLM можно ознакомиться в
табл. 1.

Пример комментирования кода по пром-
пту «Ты – Senior Java Developer. Добавь ком-
ментарии в код» (как контекст был передан
код интеграционного теста, написанный ав-
тором на Java с использованием фреймвор-
ка SpringBoot) [4]:

// Интеграционный тест для HelloController с полной загрузкой контекста Spring Boot
@SpringBootTest
// Включает автоматическое создание экземпляра MockMvc для тестирования веб-эндпоинтов
@AutoConfigureMockMvc
public class HelloControllerTest {
 // Автоматически внедряется экземпляр MockMvc для выполнения тестов
 @Autowired
 private MockMvc mvc;
 // Точка входа в тестирование метода getHello контроллера
 @Test
 public void getHello() throws Exception {
 // Отправляем GET-запрос на корень «/» с ожиданием JSON-ответа
 mvc.perform(MockMvcRequestBuilders.get(«/»)
 .accept(MediaType.APPLICATION_JSON)) // Устанавливаем Accept-заголовок для JSON
 .andExpect(status().isOk()) // Проверяем, что статус ответа равен 200 OK
 .andExpect(content().string(equalTo(«Greetings from Spring Boot!»))); // Проверяем,
что тело ответа соответствует ожидаемому значению
 }
}

Представленный фрагмент демонстри-
рует, как LLM добавила комментарии без
отрыва от контекста всего отрывка кода ин-
теграционного теста.

Помощь в дебаге / Анализ логов прило-
жения. Процесс обнаружения и исправле-
ния ошибок в коде приложений и скриптов
занимает значительную долю рабочего вре-
мени разработчиков и инженеров DevOps.
Использование LLM помогает упростить
этап локализации проблемы и оперативней
найти возможные пути ее решения.

Помощь со стороны LLM в анализе при-
чин неисправности сокращает время устра-
нения в несколько раз. Ответ модели, даже
в случае отсутствия в нем явной причины
возникновения проблемы, позволяет акцен-
тировать внимание инженера на важной ин-
формации, которая, в свою очередь, может
сыграть решающую роль в локализации
и устранении неисправности.

В табл. 2 представлен пример результат
анализа лога ошибки с помощью LLM.

Практика показывает, что в случае воз-
никновения подобной ошибки время реше-
ния инженером уровня Junior без помощи
более квалифицированного коллеги может
составить до 1 ч. Столь длительный поиск

причин ошибки связан с неоднозначностью
трактования сообщения в логе «partially
initialized module ‘requests’ has no attribute
‘get’», что, в свою очередь, наводит инже-
нера на неправильный путь решения (поиск
потерявшегося атрибута get, проверка кода
на правильность, повышение уровня логи-
рования и т.д.).

LLM в данном случае выявила зависи-
мость между названием запускаемого фай-
ла и названием стандартной библиотеки
Python, что и являлось причиной возникно-
вения ошибки, а также дала рекомендации,
как избежать повторения подобных проблем.

Помощь в конфигурации. Конфигура-
ция серверов и сервисов представляет собой
трудоемкий и подверженный ошибкам про-
цесс [5]. Использование LLM способно со-
кратить число ошибок, возникающих вслед-
ствие применения некорректных настроек.
В ходе исследования было проведено срав-
нение методов конфигурации человеком
без и с использованием модели GigaChat,
проведена оценка корректности конфигу-
раций. Доля правильных конфигураций
на стендах разработки увеличилась на 40 %
(> 20 % – только за счет отсутствия орфо-
графических и синтаксических ошибок).

28

 SCIENTIFIC REVIEW № 5, 2025 

 TECHNICAL SCIENCES 
Таблица 2

Пример анализа лога ошибки, с которой часто встречаются новички
при запуске приложения, написанного на Python

Исходный код Файл requests.py
import requests
url = ‘https://httpbin.org/get’
response = requests.get(url)

Ошибка Traceback (most recent call last):
 File “/home/in2thevoid/Документы/Научная деятельность/Применение LLM
в методологии DevOps/requests.py”, line 1, in <module>
 import requests
 File “/home/in2thevoid/Документы/Научная деятельность/Применение LLM
в методологии DevOps/requests.py», line 4, in <module>
 response = requests.get(url)
 ^^^^^^^^^^^^
AttributeError: partially initialized module ‘requests’ has no attribute ‘get’ (most likely
due to a circular import)

Промпт Ты – профессиональный Python разработчик. Найди причину ошибки
Ответ LLM Проблема вызвана конфликтом имен модулей. У вас имеется файл с именем requests.

py, который совпадает с названием популярной сторонней библиотеки requests. Из-
за этого возникает циклический импорт.
Решение: Переименовать файл requests.py в новый уникальный файл (например,
my_requests.py)
Рекомендация: Лучше избегать совпадения собственных файлов с названиями по-
пулярных пакетов Python, чтобы избежать подобных конфликтов.

Время 10 секунд

Примечание: составлена автором на основе ответа LLM и программного кода собственной раз-
работки; промпт составлен автором

Таблица 3
Пример конфигурации ingress и service

для маршрутизации трафика внутри кластера k8s

Промпт Ты – Senior DevOps Engineer. Напиши конфигурацию k8s ingress и service, распреде-
ляющие трафик на 8 разных сервисов и покрывающие соединение ssl

Результат Файл конфигурации ingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
...
 rules:
 – host: example.com
 http:
 paths:
 – path: /svc1(/|$)(.*)
 pathType: Prefix
 backend:
 service:
 name: svc1
 port:
 number: 8080
 ...
Пример Service ресурса для сервиса svc1 (остальные сервисы аналогичны)
apiVersion: v1
kind: Service
…
 ports:
 – protocol: TCP
 port: 8080
 targetPort: 8080
 type: ClusterIP

Время < 1 минуты

Примечание: составлена автором на основе ответа LLM; промпт составлен автором

29

 НАУЧНОЕ ОБОЗРЕНИЕ № 5, 2025 

 ТЕХНИЧЕСКИЕ НАУКИ 
Таблица 4

Пример очень глубокого рефакторинга кода, написанного на языке
программирования Python, выполняющего сортировку «пузырьком»

Промпт Ты – профессиональный Python разработчик. Проведи рефакторинг и расставь
комментарии в коде. Сделай код масштабируемым, вынеси нужные блоки в клас-
сы. Классы кратко прокомментируй

Код from random import randint
N = 10
a = []
for i in range(N):
 a.append(randint(1, 99))
print(a)
for i in range(N-1):
 for j in range(N-1-i):
 if a[j] > a[j+1]:
 a[j], a[j+1] = a[j+1], a[j]
print(a)

Код после
рефакторинга

import random
class RandomArrayGenerator:
 «»»Класс для генерации случайного массива»»»
 def __init__(self, size=10, min_value=1, max_value=99):
 «»»
 :param size: размер массива
 :param min_value: минимальное значение элемента
 :param max_value: максимальное значение элемента
 “””
 self.size = size
 self.min_value = min_value
 self.max_value = max_value

 def generate(self):
 “””Генерация случайного массива”””
 return [random.randint(self.min_value, self.max_value) for _ in range(self.size)]

class BubbleSorter:
 «»»Класс для сортировки массива методом пузырьковой сортировки»»»
 def sort(self, array):
 «»»
 Сортируем массив методом пузырьковой сортировки
 :param array: массив для сортировки
 :return: отсортированный массив
 “””
 n = len(array)
 for i in range(n – 1):
 for j in range(n – 1 – i):
 if array[j] > array[j + 1]:
 array[j], array[j + 1] = array[j + 1], array[j]
 return array

if __name__ == “__main__”:
 generator = RandomArrayGenerator(size=10)
 unsorted_array = generator.generate()
 print(f»Несортированный массив:\n{unsorted_array}»)
 bubble_sorter = BubbleSorter()
 sorted_array = bubble_sorter.sort(unsorted_array[:]) # Создаем копию массива,
чтобы сохранить оригинал
 print(f»Сортированный массив:\n{sorted_array}»)

Время < 1 минуты

Примечание: составлена автором на основе ответа LLM и программного кода собственной раз-
работки; промпт составлен автором

30

 SCIENTIFIC REVIEW № 5, 2025 

 TECHNICAL SCIENCES 
Полная автоматизация процесса пока

невозможна ввиду сложности требований
и необходимости контроля со стороны
персонала. Поскольку от скорости конфи-
гурации стендов разработки и тестирова-
ния напрямую зависит скорость конфи-
гурации промышленных стендов, можно
выявить прямую зависимость прироста
скорости вывода новой функционально-
сти и предоставления ее конечным поль-
зователям (что, по факту, является умень-
шением бизнес-метрики time-to-market
[6]). В табл. 3 представлен пример конфи-
гурации сети кластера k8s [7], составлен-
ной LLM.

Помощь в освоении технологий. Ча-
стое обновление техстека и версий ПО
увеличивает нагрузку на команду DevOps,
стимулируя обучение. LLM могут по-
мочь, давая советы и подсказки. Однако
неправильное использование LLM может
усложнить процесс обучения: отсутствие
нужного контекста ведет к выдаче некор-
ректных рекомендаций. Например, запро-
сы о нетипичных или новых сочетаниях
технологий, таких как Gradle 8.8 с Kotlin
[8], часто приводят к выдаче некоррект-
ных ответов. Для митигации последствий
рисков некачественного обучения реко-
мендуется использование микротестиро-
вания [9], изучение официальных курсов
и документации в сочетании с возможно-
стями LLM (объяснения кода, его дора-
ботка или краткий пересказ статей и пара-
графов документации).

Помощь в рефакторинге. Рефакторинг
[10] существующего кода является важ-
ной частью поддержания высокого каче-
ства программного продукта (в контексте
DevOps – пайплайна и настроек инфра-

структура). Использование LLM позволяет
автоматизировать создание небольших ис-
правлений и оптимизаций, снижая нагруз-
ку на команду. Также LLM позволяет пол-
ностью переписать большие объемы кода,
но требует контроля и тестирования со сто-
роны команды. Правильно составленный
промпт позволяет существенно улучшить
уровень рефакторинга LLM, пример пока-
зан в табл. 4.

В контексте данной статьи автор не бу-
дет углубляться в качество кода и его мас-
штабируемость. Пример выше показывает,
что во время рефакторинга [10] код не обя-
зательно уменьшится в объеме, но, при пра-
вильно составленном промпте, может стать
более масштабируемым/быстрым/эконом-
ным к ресурсам и т.д. В конкретном случае
LLM была поставлена задача перевести
код в парадигму объектно-ориентирован-
ного программирования, с чем она успеш-
но справилась.

Выбор архитектурного решения.
При выборе архитектурных решений долж-
ны быть учтены ключевые факторы: биз-
нес-требования, технические характеристи-
ки, бюджет и сроки реализации [11]. LLM
помогают принять оптимальное решение,
предлагая рекомендации на основе боль-
шого количества данных. Передача на вход
LLM контекста инфраструктуры, языков
программирования, протоколов и бизнес-
требований позволяет ей строить схемы
концептуальной и детальной архитектуры
и предлагать несколько альтернативных
вариантов. В DevOps данная функциональ-
ность может быть применена для выбора
инфраструктурных решений, проектиро-
вания пайплайнов [12] и каналов передачи
данных [13].

Таблица 5
Подсчет ресурсов приложения и кластера k8s

Промпт Ты – Senior Solution Architect. Посчитай ресурсы (cpu, ram, реплики), необходимые
сервису, написанному на rust, использующему базу данных postgres и отвечающему
на 100000 запросов в секунду. Сервис расположен в k8s. Также посчитай ресурсы
кластера k8s и базы данных postgres. Запас по нагрузке – 30 %

Результат Окончательные оценки ресурсов: Rust-сервис CPU130 RAM1.3 GB, Реплика Rust-
сервиса CPU43 RAM 0.43 GB, База данных Postgres CPU4, RAM 16 GB
Исходя из этих оценок, минимальная конфигурация узлов k8s-кластера может вы-
глядеть следующим образом: Количество реплик Rust-сервиса: 3 Ресурсы узла k8s-
кластера: CPU: 150 (для обслуживания всех реплик и самой базы данных) RAM: 20
GB (суммарно для трех реплик и одной базы данных). Это лишь ориентировочные
расчеты, реальная потребность может варьироваться в зависимости от архитектуры
сервиса, характеристик оборудования и инфраструктуры. Рекомендуется провести
стресс-тестирование и профилирование перед внедрением.

Время 30 секунд

Примечание: составлена автором на основе ответа LLM; промпт составлен автором

31

 НАУЧНОЕ ОБОЗРЕНИЕ № 5, 2025 

 ТЕХНИЧЕСКИЕ НАУКИ 

С
хе

ма
 т

оч
ек

 п
от

ен
ци

ал
ьн

о
це

ле
со

об
ра

зн
ог

о
вн

ед
ре

ни
я

LL
M

 в
 э

т
ап

ы
 п

ро
це

сс
а

ме
т

од
ол

ог
ии

 D
ev

O
ps

П

ри
ме

ча
ни

е:
 с

ос
т

ав
ле

н
ав

т
ор

ом
 н

а
ос

но
ве

 п
ро

ве
де

нн
ог

о
ис

сл
ед

ов
ан

ия
, с

об
ра

нн
ы

х
да

нн
ы

х
и

сд
ел

ан
ны

х
вы

во
до

в

32

 SCIENTIFIC REVIEW № 5, 2025 

 TECHNICAL SCIENCES 
Подсчет технических ресурсов. Оценка

вычислительных ресурсов – важная зада-
ча DevOps на начальном этапе разработки.
LLM эффективно помогает в расчете потреб-
ности, используя исторические статистиче-
ские данные и прогнозируя потенциальные
нагрузки. Поскольку нагрузочное тестиро-
вание [14] на ранних этапах разработки при-
ложения, как правило, отсутствует, расчет
носит предварительный характер. Точность
расчета LLM на данном этапе не критична,
так как дальнейшая коррекция осуществля-
ется по результатам реального НТ. Пример
расчета ресурсов, сделанного LLM, пред-
ставлен в табл. 5. Помощь в написании до-
кументации. Документация является неотъ-
емлемой частью любого проекта, обеспечи-
вающей передачу знаний внутри команды.
LLM способны быстро формировать доку-
ментацию на основании кода и архитектуры.
Проведенное исследование подтверждает
целесообразность написания документации
с помощью LLM, но только при контроле ре-
зультата командой. Языковые модели хоро-
шо описывают не только свой код, но и код,
переданный в контексте, отлично могут опи-
сать часть «легаси» кода [15], сокращая вре-
мя на его исследование, а также хорошо обо-
гащают уже существующую документацию
примерами и уточнениями.

Как итог, автором составлена схема то-
чек целесообразного внедрения языковых
моделей в этапы процесса методологии
DevOps. Схема представлена на рисунке.

Заключение
Проведенное исследование выявило

значительный потенциал больших языко-
вых моделей (LLM) в повышении эффек-
тивности практик DevOps. Получены поло-
жительные результаты во всех выбранных
направлениях. Результатом стали снижение
среднего времени выполнения задач, по-
вышение качества артефактов и автома-
тизация рутинных задач. Также выявлены
и риски, связанные с точностью рекомен-
даций и корректностью выдачи ответов.
Таким образом, можно сделать вывод о том,
что внедрение LLM в методологию DevOps
является целесообразным и эффективным
и позволяет добиться заметной оптимиза-
ции работы команды, а следовательно, и со-
кращения time-to-market и количества ин-
цидентов, что на дистанции использования
положительно повлияет на финансовый эф-
фект как DevOps подразделения, так и про-
граммного продукта в целом.

Список литературы

1. Пеленицына П.А. DEVOPS как взаимодействие
между разработкой и эксплуатацией // Интернаука. 2024.
№ 21–4 (338). С. 14–16. URL: https://internauka.org/journal/
science/internauka/338 (дата обращения: 12.10.2025).

2. Яковлева М.В., Лысенко М.В., Овсянникова У.С.
Концепция Agile: возможность применения гибких методо-
логий в производственных отраслях промышленности // Век
качества. 2023. № 3. С. 207–217. URL: http://www.agequal.ru/
pdf/2023/323009.pdf (дата обращения: 12.10.2025).

3. Aadi Juthani Оptimizing llm strategies for playing mend-
ikot using prompt engineering // International Journal For Multi-
disciplinary Research. 2024. Т. 6. № 6. URL: https://www.ijfmr.
com/papers/2024/6/30130.pdf (дата обращения: 22.10.2025).

4. Ибраимов Р.И., Джемалетдинов А.Б., Шевченко А.А.
Spring boot: создание тестов для spring mvc контроллеров //
Информационно-компьютерные технологии в экономике,
образовании и социальной сфере. 2017. № 4 (18). С. 104–111.
EDN: VQLFBC.

5. Патрикеев А.В. Разработка отказоустойчивой конфи-
гурации серверной инфраструктуры // Научный электрон-
ный журнал Меридиан. 2019. № 12 (30). С. 312–314. URL:
https://meridian-journal.ru/site/articlea1f1-2/ (дата обращения:
22.10.2025).

6. Mishra A., Otaiwi Z. Devops and software quality: a
systematic mapping // Computer Science Review. 2020. Т. 38.
С. 100308. URL: https://www.sciencedirect.com/science/article/
pii/S1574013720304081 (дата обращения: 14.10.2025).

7. Ковтун Д.П., Лапонина О.Р. Использование управле-
ния доступом на основе атрибутов и mTLS в микросервис-
ной архитектуре // International Journal of Open Information
Technologies. 2025. Т. 13. № 6. URL: https://istina.msu.ru/
publications/article/791271027/ (дата обращения: 14.10.2025).

8. Луценко Д.Ю. Сборка (CI / CD) проектов, не исполь-
зующих JVM с помощью GRADLE / KOTLIN // Информаци-
онные технологии в управлении и экономике. 2021. № 2 (23).
С. 61–67. URL: https://itue.ru/Issue/Article/155 (дата обраще-
ния: 14.10.2025).

9. Бугаева А.А., Денисенко В.В. Процесс тестирования,
методы и типы тестирования программного обеспечения //
Синергия Наук. 2022. № 72. С. 92–102. EDN: WPKFPG.

10. Дерюгин Д.С. Рефакторинг, как метод обеспечения
качества продукта // Синергия Наук. 2020. № 43. С. 409–415.
EDN: MASOUS.

11. Magomedova Z. Enterprise architecture framework
(TOGAF) // Экономика и социум. 2018. № 10 (53). С. 715–
717. URL: https://www.iupr.ru/_files/ugd/b06fdc_90ab2c89da
0840b4b82cacb0b2cc7739.pdf?index=true (дата обращения:
14.10.2025).

12. Priyanka M., Sindhuja K., Madhuvani V., Prasoona
Sowpthika K., Kranthi Kumar K. DevOps optimized naviga-
tion: building a DevOps CI/CD pipeline // EPRA International
Journal of Research & Development. 2024. С. 376–382. URL:
https://eprajournals.com/IJSR/article/12653 (дата обращения:
22.10.2025).

13. Абдраимова А.С. Оценка и контроль качества кана-
ла передачи данных с помощью его характеристик // Про-
блемы науки. 2017. Т. 2. № 5 (18). С. 19–24. URL: https://
scienceproblems.ru/images/PDF/2017/18/pn-5-18--2.pdf (дата
обращения: 22.10.2025).

14. Лебедев В.С., Михаэлис В.В. Обзор программных
инструментов для проведения нагрузочного тестирования
информационных систем // Информационные технологии
и математическое моделирование в управлении сложными
системами. 2021. № 2 (10). С. 40–45. DOI: 10.26731/2658-
3704.2021.2(10).40-45. EDN: KKZECX.

15. Duvvur V. Overcoming the challenges of legacy code
in a modern it landscape // International Journal of Science and
Research. 2021. Т. 10. № 12. С. 1500–1502. URL: https://www.
ijsr.net/archive/v10i12/SR24517162432.pdf (дата обращения:
27.10.2025).

Конфликт интересов: Авторы заявляют об отсутствии конфликта интересов.
Conflict of interest: The authors declare that there is no conflict of interest.

